Predictive Time Series Analytics at Scale
From autonomous driving to industrial IoT, the age of billions of intelligent devices generating time-varying data is here. There is a growing need to ingest and analyze time series data accurately and efficiently to look for interesting patterns at scale. Our key goal in Metronome is to build novel data management, machine learning, and interactive visualization techniques for supporting the development and deployment of predictive time series analytics applications, such as anomaly detection.
“Visual Exploration of Time Series Anomalies with
Metro-Viz”
Philipp Eichmann, Franco Solleza, Junjay Tan, Nesime Tatbul, Stan Zdonik
SigMOD Demo. 2019. Best Demo Award
“Metro-Viz: Black-Box Analysis of Time Series Anomaly Detectors”
Philipp Eichmann, Franco Solleza, Junjay Tan, Nesime Tatbul, Stan Zdonik
SigCHI. 2019.
“Precision and Recall for Time Series”
Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, Justin Gottschlich
NeurIPS Spotlight Paper. 2018.
Code: TSAD-Evaluator
“Greenhouse: A Zero-Positive Machine Learning System for Time-Series Anomaly
Detection”
Tae-Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, Stan Zdonik
SysML. 2018.
“Precision and Recall for Range-Based Anomaly Detection”
Tae-Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, Stan Zdonik
SysML. 2018.
“Data Ingestion for the Connected World”
John Meehan, Cansu Aslantas, Jiang Du, Nesime Tatbul, Stan Zdonik
CIDR. 2017.
Philipp Eichmann | Franco Solleza | Stan Zdonik | Nesime Tatbul |
Brown University | Brown University | Brown University | Intel Labs and MIT |
Mejbah Alam | Justin Gottschlich |
Intel Labs | Intel Labs |
Tae Jun Lee | Eric Metcalf | John Meehan |
Microsoft | Awake Security | Tranquil Data |
grant IIS-1526639 |